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Abstract

Preconditioning methods have become tile method

of choice for the sr)lution of flowfields invc_lving the

simultaneous presence of low Mach and transonic re-

gions. It is well known that these methods are impor-

tant for insuring accurate numerical discretization as

well as convergence efficiency over various operating
conditions such as low Mach number, low Reynolds

number and high SCrouhal numbers. For unsteady

problems, the preconditioning is introduced within

a dual-time framework wherein the physicat time-

derivatives are used to march the unsteady equations

and the preconditioned time-derivatives are used for

purposes of numerical discretization and iterative so-

lut.ion. In this paper, we describe the intplementation
of the preconditioned dual-time methodology in the

OVERFLOW code. To demonstrate the performance

of the method, we employ both simple and practical

unsteady flowfields, including vortex propagation in

a low Mach number flow, flowfietd of an impulsively

started plate (Stokes' first problem) and a cylindri-

cal jet in a low Mach number crossflow with ground

effect. All the results demonstrate that the precondi-

tioning algorithm is responsible for improvements to

both nmnerical accuracy and convergence efficiency
and, thereby, enables low Mach number unsteady com-

putations to be performed at a fraction of the cost of

traditional time-marching methods.
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Introduction and Backl]iround

Accurate and efficient numerical simulation of un-

steady fluid flows is one of the remaining challenges for

the resolution of engineering problems. For high speed

flows, time-marching methods developed by the aero-
dynamics' CFD community have been very successful

for both Euler and Navier-Stokes problems [1, 2]. Like-

wise, for incompressible flows, unsteady algorithms

based on projection methods [3, 4] or artificial com-

pressibility [5, 6, 7, 8] approaches have been widely

applied. However, many engineering problems involve
the co-existence of both compressible and incompress-

ible flow regimes in the same flow field. For such cases,

generalized preconditioned dual-time approaches have

been developed which allow the same computer code

to be applied in all speed regimes [9, 10].

An example of a flow field that simultaneously in-

volves both low speed and high speed regions is the

Harrier aircraft in near-hover (landing approach) con-

dition [11]. In this situation, the aircraft's forward

velocity is approximately 0.04 Mach. However, at the

same time, the aircraft is kept in the air by four high

speed jet exhausts directed toward the ground. The
interaction of the jets with the cross-wind and the

ground effect renders this ftow field extremely time-

dependent. A purely incompressible method would be

appropriate for the low-speed free-stream region, but

not for the high speed jet plumes. On the other hand,

a transonic flow method would be appropriate for the

jets, but is inefficient for the free-stream. Thus, nu-

merical procedures for the solution of such problems

must be capable of siumltaneously handling both t.ran-
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sonic and low speed flow regimes.

Tile difficulty that transonic algorithms face at low

speeds arises due to the poor conditioning of the eigen-
values of the time-marching system. This lack of con-

ditioning leads to poor solution accuracy as well as

poor convergence properties. Over the last decade,

preconditioning methods have become increasingly

popular as a means of assuring that the time-marching Here,
algorithm is well-conditioned in terms of both accu-

racy and efficiency at all speeds [12, 13]. For steady
state problems, these methods involve the introduction

of pseudo-time derivatives in lieu of the physical time

derivative terms in the time-marching system. For un-

steady flows, the formulation is typically cast within

a dual-time-stepping strategy, wherein the physical-

time derivatives are employed to follow the physical

transients and the pseudo-time derivatives serve as an

iterative device. Propel definition of the pseudo-time

derivatives serves to optimize the numerical solution

procedure, making tile performance of the algorithm
commensurate with traditional transonic methods at

high speeds and with incompressible methods at low

speeds.

In this paper, the implementation of the precon-

ditioned dual-dine algorithm in the OVERFLOW

code [1] is discussed. The OVERFLOW code is a com-

pressible Navier-Stokes code that uses the Chimera

overset grid approach [14] for simulating complex-body

configurations such as the afore-mentioned Harrier air-

craft. The main solution algorithm in the code is the

diagonalized approximate-factorization procedure [15].
The implementation of the preconditioned dual-time

scheme in the diagonalized approximate factorization

framework has been described by Buelow et al. [16] and
we follow tile same approach in this paper. Specifically,

this involves a modification of the traditional diago-

nalization procedure to include both the physical and

preconditioned time-derivatives, thereby avoiding the
introduction of block matrices in the implicit operator.

The paper is organized as follows. We start by pre-

senting the preconditioned dual-time algorithm and its

implementation in the diagonalized framework of the

OVERFLOW code. Following this, we present several
computational examples to verify" the accuracy and ef-

ficiency gains in various flow regimes of interest. The
example problems include both simple test problems,

such as the propagation of a Lamb vortex and Stokes'

first problem, as well as more practical situations, such

as a round-jet in a low-Mach number cross-flow with

ground-effect. The latter problem is representative of

the Harrier flow fields mentioned earlier. Finally, we

summarize the current status of the unsteady model-

ing capability in OVERFLOW and point out the areas

for future research and development.
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Preconditioned Dual-Time Algorithm

Equations of Motion

The Euler equations in generalized coordinates can
be written as follows:
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x,jy_zi - x¢y,_z_ and U, V, and W are the contra-
variant velocities.

To carry out the iterations at each physical time

step, an artificial time(r) term is explicitly introduced

a© oQ o_ a,+ od
o_- + N + _ + N + _- = o (2)

Convergence of tile pseudo-time(sub-iterations) at

each physical time step is important for obtaining an

accurate transient solution. To optimize the perfor-

mance of the pseudo-iterations, the pseudo-time term
is written in terms of the primitive variable vector

Qp = (P, u, v, w, T)/J and the preconditioning matrix

Fp.

Vp + _- + _- + _- + -_:- =0 (3)

Here Fp takes the form discussed in Ref. [9] and is
given in the Appendix.

Discretization

Discretizing Eqn. 3 with first order finite difference
for artificial time and second order backward difference

for the physical time terms results in

k+l _k 30k+l _40n_t_0n-1p -- (_)p

Fp Ar + 2At (4)

+6_Ek+l + &;/3-k+_ + 6¢C;k+_ = 0



Here,k is the pseudo-iteration counter, n is th_ time

step counter and c_represents spatial differences in the

direction indicated by the subscript. After lineariza-

tion,

^

rP"_QP/'kT -[- 3(6k d- Pel_6p ) - 40 n -]- 6 n-12At

0

where A0p 0 k+l ^ k=__p -Qp, Ap, Bp, and Cp are the flux
^ _ oQ

Jacobians with respect to @p, and F_ - o--_-_
Rewriting this equation such that all terms evalu-

ated at sub-iteration k or time steps n and n - 1 are

on the right hand side and all terms multiplying ,_kQp
are on the left hand side

Fp + e_ + + Bp_v +

where

R k = --/kT- ( 36k -- 46n2,,_t+ On-1

The scheme can be diagonalized using Eqn. 11 and
takes the form

(12)
= 1 + :_p'_ The eigenvalues _-t are discussedwhere g 5 52-"

in the Appendix.

Artificial Dissipation

The diagonalized approximate factorization scheme

employed in OVERFLOW uses central differences to

discretize the spatial directions. It has been shown

by many researchers that, to maintain uniform accu-

racy across different flow regimes, it is important to
formulate the artificial dissipation terms for the pre-

conditioned system. In the dual-time context, ttfis
= R k means that the artificial dissipation terms must be con-

(6) structed using the pseudo-time derivatives rather than
the physical time-derivatives. Accordingly, a typical
second order dissipation terin can be written as

\

(is)
/

(z)
The key step in the derivation of a diagonalized scheme

rests in combining the pseudo- physical time-derivative

terms on the left hand side into a single matrix. Ac-

3 A_r, (see Appendix),cordingly, we define Sp = Y p + _ _i _

(s)
Multiplying through by F_ and converting back to the

conservative system, we get

(r + + ATF_S_I Bk5_
\ (9)

FeSplR k

where A, B, and C are the flux Jacobians with respect
to 6.

Approximate Factor_zation and

Diagonalization

Applying approximate factorization,

(10)

Now, F_S_-t.4 has the same eigenvalues as S_-_.ip

and the eigenvectors of FeSpl 'A are the columns of

F_X( where X_ are the eigenveetors of Sp-_,@. Thus,

= = r x a xg'r2 (it)

where a(A) denotes the spectral radius of the matrix
A.

In the implicit scheme, the second-order dissipation

terms appear in the implicit LttS operator as well. For

the purposes of diagonalization, however, it is neces-

sary to modify the spectral radius term o-(Fp-_Ap) with
cr(Sp-lA_). This approximation appears only on the
LHS and has been shown by Buelow et at. [16] to have

little or no effecct on the convergence efl3ciency. We

further point out that the modification does not im-

pact the accuracy of the discrete formulation.

Preconditioner Definition

The definition of tile preconditioning matrix (Fp)
is determined by the paralneter Mp (see Eqn. 17 in

the Appendix). In the present case, this parameter is
defined as

M(,, M,,u,_) , 1) (14)

where Mi is the local Math number scale convention-

ally used in steady preconditioning [17] and M,_i n is

a cutoff value usually set to 3 x /t,f _ Mu is a new

unsteady scale given by

L u

3I, - _rAta (15)

where L_ is a user specified unsteady length scale [16],

and a is the speed of sound. Note tha_ when M_ = 1,

preconditioning is not applied.
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Note that the unsteady preconditioning varies the

choice of the preconditioning parameter between tile

inviscid choice and the no preconditioning choice. For

acoustic problems, the physical time-step size is small

since it is based upon the acoustic CFL number. Tt_e

unsteady preconditioning parameter then approaches
unity (equivalent to the no preconditioning choice).

On the other hand, for vortex propagation problems,

the physical time step is large as it is selected based

upon the particle CFL number. The corresponding un-

steady preconditioning parameter then approaches the

Math number (equivalent to the steady precondition-

ing choice). For intermediate physical time step sizes,

the unsteady choice provides preconditioning values

between these two limits. As discussed in Ref. [10],

the unsteady preconditioning choice optimizes conver-

gence efficiency of the pseudo-time iterations regard-
less of the choice of physical time step. In most cases,

it also insures accurate scaling of the artificial dissi-

pation terms. The exceptions to this statement are
discussed further in the Results section.

Results

Vortex propagation

Vortex propagation is used as the first example of an

unsteady flow field. Trends for this problem have been

previously established in Ref. [10] based on stability

analysis. Specifically, a Lamb vortex is defined with
the following velocity distribution.

1 - exp -7
_.;(r, 0) = 0, I'_ = r - (16)

P

where F is the vortex strength and 0 is a character-

istic radius. The initial conditions are specified using

this velocity distribution and the vortex is propagated

using the dual-time-stepping scheme described in the
previous section. The present study is conducted at

free stream Mach numbers of 0.1 and 0.001. To study

the performance of the scheme with and without pre-

conditioning, the sub-iteration convergence is studied
for several time steps. The time step is characterized

by CFLu = _, where u is the speed of propagation,
At is the physical time step and Az is the grid size.

Ideally, for efficient time-marching of vortex propaga-

tion problems, this CFL number should be of order

unity.

Here as well as in the other test cases presented

in this paper, we compare the convergence of the

sub-iterations at each physical time-step for three dif-

ferent choices of the preconditioning matrix, namely,

no preconditioning, steady preconditioning and un-

steady preconditioning. The first choice corresponds

to the traditional time-marching algorithm with dual

time-stepping, which is the base scheme in the OVER-

FLOW code. The second choice adopts the standard

steady state preonditioning choice used in steady low

Mach computations. Finally,, the third choice concerns

the present implementation and is given in Eqn. 14.

We note that the length scale, L_, is typically' selected

to be the height of the domain, which is in accordance

with the suggested value in Ref. [10].

Figure 1 shows the results for M = 0.1 for four val-

ues of CFLu. For the smaller values of CFL_ (0.1 and

1), the no preconditioning and unsteady precondition-

ing cases converge rapidly, taking about 200 iterations

to reach machine zero. On the other hand, the steady

preconditioning choice is observed to yield poor per-

formance. At the higher CFL numbers (10 and 100),

tile steady and unsteady preconditioning choices con-

verge well, taking about 300 to 400 iterations to reach
machine zero, while the no preconditioning choice now

yields poorer performance. It is clear from these re-

sults that the unsteady' preconditioning choice essen-
tially behaves like the no preconditioning choice for

small time steps and like the steady preconditioning

choice for large time steps. Importantly, the unsteady
choice yields the best performance for all physical time

s_ep sizes. We point Out, however that for efficient

and accurate solutions, the optimal physical time step

choice wouId correspond to CFL,, = i.

The advantage of using the unsteady preconditioner

is observed to be more significant at even lower speeds

as Fig. 2 shows for a free stream Math number of

0.001. At this speed, for low values of CFL= the

steady preconditioner does not converge in the sub-

iteration. The unsteady preconditioner is observed to

follow the nonpreconditioned case as expected (see Fig.

2(a)). At CFL_ = 0.1, however, the unsteady pre-
conditioner outperforms the non-preconditioned case.

At CFL_, = 1, the steady preconditioner is conver-

gent, but like tile nonpreconditioned case it displays

poor performance. Again the unsteady preconditioner

outperforms the other choices. At an even higher

CFLu = 10 the steady preconditioner performs as well

as its unsteady counterpart. It is thus clear that in all
cases the unsteady preconditioning provides optimal

performance of the pseudo-time convergence. Note

that these trends are similar to those presented in Ref.

[10].

The subiteration convergence is important to study'

because it has an impact on the accuracy of tile solu-

tion. If the subiterations are not properly converged,
the solution will be inaccurate. Of course, practical

computations do not require that the sub-iterations be

converged to machine zero. Therefore, to establish the

amount of work required to obtain a solution, the num-
ber of sub-iterations required for 4-order convergence
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is plotted in Fig. 3 against CFL_. For smaller values

of CFL,, where the unsteady' preconditioner performs

as well as the no preconditioning choice, a relatively
small number of sub-iterations are required. However,

at these small CFLu, a large number of time steps
is needed to march the solution a specified amount of

time. Accordingly, the CPU time required for march-

ing the vortex one rotation is plotted in Fig. 4. Here
at low values of CFL,,, the CPU time required is pro-

hibitively high. For CFL_, = O(1), where the vortex

is marching approximately, 1 grid point per time step,
the unsteady preconditioner requires the least number
of sub-iterations and makes one rotation in the least

amount of CPU time. At larger values of CFL,,, the

solution is no longer correct as the time step is simply

too high to accurately capture the w)rtex convection.

From these results, it is clear that the preconditioned

dual-time scheme provides substantial savings in CPU

without preconditioner for a Lamb vortex at 3/ = 0.1

time for low Mach flowfieids.

We next turn our attention to computational ac-

curacy. Vortex computations are notoriously difficult

and the second-order schemes considered here are espe-

cially prone to excessive numerical damping. However,

we are primarily, concerned with a comparative assess-

ment of the different preconditioning choices. Figure 5

shows vorticity contours of the initial condition (Fig.

5a) and the solution after one rotation through the (pe-

riodic) domain for the various preconditioning choices

(Figs. 5b, c and d). The non-preconditioned result

(Fig. 5b) is completely wrong, with the vortex in the
wrong location and its strength significantly damped

out. Note that this is true even though the inner it-

erations are fully converged. Thus, the discrepancy is

due to the poor accuracy of the numerical diseretiza-

tion and not due to lack of convergence. In contrast,
the steady (Fig. 5c) and unsteady preconditioning
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(Fig. 5d) results predict the correct location of the

vortex and a more respectable vortex strength. These

results clearly point to the benefit of preconditioning

in limiting excessive numerical dissipation and hence
preserving the accuracy of the numerical formulation

as well as computational efficiency.

Stokes' first problem

For the next test case, we consider the solution of an

impulsively started plate, which involves the unsteady

development of a viscous boundary layer. Commonly
referred to as Stokes' first problem, there is a closed

form self-similar solution, which makes this an ideal

test case for veri_'ing both convergence and accuracy
properties of the preconditioned scheme considered
here.

To systematically stud), the computational results,

Comparisons of residual convergence with and without preconditloner for a Lamb vortex at

we use an isotropic mesh with a fixed aspect ratio of

unity. We use 11 grid points in the self-similar direc-

tion and I01 grid points ill the wall-normal direction.

The domain height is 10 .4 for a Ay = 10 -6. On this

uniform Cartesian grid, the initial boundary layer is
selected to extend to approximately 51 points off the
surface. The initial condition is obtained from the

analytical solution attd the computations are carried

out to follow the continued evolution of the boundary

layer.

We mentioned earlier that the characteristic length

(L,,) that appears in the definition of the unsteady pre-

conditioning parameter (Eqn. 15) was typically chosen

to be the length or width of the computational do-

main. Here, the relevant length scale is the height of
the domain, which is given by 10 -4. Figure 6 shows

the sensitivity of the sub-iteration convergence to the

6
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selection of this parameter for a von Neumann number

of 1.67 (VNN = _at = 1.67). It is clear that values

of 10 '_ (and less) yield the best convergence rates.

Figure 6 also shows the convergence rates with no pre-

conditioning and the steady preconditioning choices.

Indeed, it is clear that these choices yield substantially
poorer sub-iteration convergence.

To accurately capture the boundary layer growth

an appropriate physical time step for the numerical

marching process must be chosen. The viscous time

step or Von Neumann nuntber (VN}V) is the char-

acteristic time-step of interest in this problem. It is
desirable to use a yon Neumann number of 1 which cor-

responds approximately to a boundary layer growth of

1 grid point per time step. To assess the convergence

behavior of the low Mach preconditioner with respect
?, r,[to I :N i\, the number of sub-iterations required to con-

verge the problem 4 orders of magnitude is plotted for

a given time step in Fig. 7. For small values of VNN,

the no preconditioning choice shows good convergence

behavior. However, for higher values of VNN, the

convergence is extremely slow and the solution can not
be obtained in a reasonable number of sub-iterations.

Using steady preconditioning, the convergence hangs
before getting to 4 orders for VNN < 0.5. For higher

values of VNN proper convergence can be obtained,

but very large time steps can lead to poor resolution of

the transient evolution of the solution. The unsteady

preconditioner exhibits good sub-iteration convergence

behavior regardless of the choice of VNN.

The CPU time required to get four orders of sub-

iteration convergence is shown in Fig. 8. It is clear
that the unsteady preconditioning formulation yields
the best CPU times for all choices of VNN. As men-

tioned earlier, optimal efficiency and accuracy is ob-

tained for VNN of order unity. Under these conditions,

the no preconditioning case does not provide good con-

vergence, while the steady and unsteady precondition-

ing choices provide good sub-iteration convergence.

Indeed, Figure 7 indicates that the dual time precon-

ditioned formulation provides significant CPU savings
over the traditional (non-preconditioned) formulation.

We have mentioned earlier that the choice of precon-

ditioning also influences the accuracy of the computa-

tions through the definition of the artificial dissipation

terms. Table 1 compares the solutions obtained at a

single point in the flowfield with the exact solution for

several choices of VNN and preconditionings. It can

Table 1 Solution comparison for Stokes' first prob-
lem with respect to various values of 17NN

I NoVNN Precond.
Steady

Precond.

0.37617"

Unsteady
Precond.

Exact

Solution

0.017 0.37151 0.37465 0.37622

0.167 0.37177* 0.37617* 0.37606 0.37622

1.67 0.37645* 0.37618 0.37619 0.37622

, Not converged

be observed that the no preconditioning choice is not

convergent for large VNN, while the steady precondi-
tioning choice is not convergent for small VNN. The

unsteady preconditioning, in contrast, is always con-

vergent. The most accurate solutions are obtained by

the steady and unsteady preconditioning choices when

the VNN is order unity. It can also be observed that

the no preconditioning result for small VNN [s some-

what inaccurate even though the solution is converged.

This is because the poor scaling of the artificial dissi-

pation terms yields a more diffusive formulation. For

a more detailed explanantion, the reader is referred to

Ref. [9]. Interestingly,, the unsteady preconditioning
result for small VNN is also somewhat, in error. This

American Institute of Aeronautics and Astronautics
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e) Steady Preconditioner

Fig. 5 Comparison of solution with and without

is because the unsteady preconditioning approaches

the no preconditioning formulation at small VNN and

the corresponding artificial dissipation terms become

poorly scaled. This difficulty may be readily circum-

vented by separating tile preconditioning formulation

used for the time-derivative (which is responsible for

convergence effficiency) and that used for the artifi-

cial dissipation terms (responsible for accuracy)• Such

a formulation may be ilnplemented within a multiple

pseudo-time framework as discussed in Ref. [18], but

is beyond the scope of the present article.

Cylindrical jet in cross flow with ground effect

A complex unsteady flow field akin to the problem

of a Harrier in ground effect is a jet in cross flow with
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d) Unsteady' Preconditioner

preconditioner for a Lamb vortex at AI = 0.001

ground effect. This problem has been studied exper-

imentally by Cimbala et. al. [19] with a jet at Mach
0.13 issuing out of a 3 in. cylindrical tube in the cen-

ter of a wind tunnel. The erosswind Mach number

is 0.013. The jet subsequently ilnpinges on the wind

tunnel foor 9 in. away fi-om the tube exit.

For the present simulation a single grid with cylin-

drical topology is used with stretching to assure

proper viscous mesh spacing near the tube walls and

ground. The mesh consists of approximately 250,000

grid points.

The experimental results of Cimbala et al. [19] re-
veal that the jet impinges on the ground and splays in

all directions. The cross flow pushes the jet creating

a horseshoe shaped vortex which surrounds the jet on

American Institute of Aeronautics and Astronautics
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3 sides. The ground vortex in turn is observed to pul-
sate with a frequency of about 1-5 Hz, a result of the

interaction between the jet with the low speed cross-

flow. The general features of the flowfield are observed

in Fig. 9, which shows a particle trace issued fi'om the

jet at a fixed point in time. The jet is seen to impinge

the ground and a horseshoe vortex is seen in front of

the jet.

The computation of this flowfield with a traditional

dual time scheme (without preconditioning) is stable

only for small time steps. This stability restriction

may be attributed to the poor convergence of the sub-

iterations at large time step values. Our studies indi-

cated that the maximum physical time step that could

be reliably used was 5.5 × 10 .5 s. Using this time step,

more than 18,000 time steps are required to resolve a

frequency of 1 Hz (Oaat is characteristic of the ground

vortex unsteadiness). Clearly, this would render the

computation prohibitively expensive. Moreover, the

non-preconditioned choice also leads to a more dissipa-
tive numerical solution, which would also compromise

the accuracy of the simulations. In contrast, when the
preconditioned dual time scheme is employed, much

larger time-steps may be stably employed and reliable

inner iteration convergence is obtained. The compu-

tations presented in this paper were obtained with a

physical time step size of 5.5 x 10 .3 s., which corre-

sponds to about 180 time steps per 1 Hz cycle. We

point out however that the larger physical time steps

typically necessitate the use of more inner iterations
(compared with five inner iterations used in the tradi-

tional algorithm). In the present calculations, 50 inner

iterations were employed at each physical time step•

Thus, the preconditioned dual time scheme yields a

potential CPU savings of about an order of magnitude.

Figure 10 shows a plot of the L2 norm of the residual

at each physical time step. The periodic unsteady na-
ture of the flowfield is evident. The lowest frequency

indicated in these results is approximately 1.8Hz. We

point out that these results represent a preliminary

effort of computing this complex flowfield. Detailed

evaluations are presently underway and will be the

subject of a future article. Here, it is sufficient to state

that the preconditioned dual-time formulation shows

potential in computing complex nmltiple-timeseale, 3-

D problems with significantly improved accuracy and

efficiency.

9
American Institute of Aeronautics and Astronautics



PAETI]CLE TRACES COLOPED BY U VELOCITY

CON"rOUR LEVELS

- 0.13C00

- 0 12000

- 0 _CC('<

0.013 MACH

..... 0.00 DEG ALPHA

:; . &O0x 10"'4 I%

Fig. 9

Summary

A preconditioned dual-time algorithm has bee:: im-
plemented in the OVERFLOW code. The approach
follows the method of Buelow et al. to tailor the formu-

lation within the diagonalized solution procedure used

in the OVERFLOW code. Modifications of the pre-

The particle trace at an instance in time for a jet at M = 0.13 in a hi : 0.013 cross flow

Residual History

Log 10(L2 norm of delta Q)

r T • r

58
16400 16600 16800 17000 17200 17400

Time Step Number

Fig. 10 The residual with respect to time step for
the jet in cross flow

conditioning selection to account for unsteady scales
have also been included. The method significantly en-

hances the capability of the code, enabling it to handle

unsteady flows over a wide range of Math numbers and

time scales. Specifically, the preconditioned dual-time

method enhances accuracy by improving the sealing

of the artiflcal dissipation terms used in the numer-
ical discret.ization procedure and improves efficiency

by optimizing the number of sub-iterations required

at each physical time step. For low Mach nmnber, low

frequency problems, in particular, significant savings

in CPU time are possible.

The enhancements made possible by the method are

demonstrated for both simple and practical flowfields.

The simple test problems include the propagation of

a Lamb vortex in an straight channel and the flow-

field of an impulsively started plate. Computational

results reveal that the dual-time scheme with unsteady

preconditioning provides optimal sub-iteration conver-

gence for all choices of time step size and Mach num-
ber. Moreover, improved accuracy is also obtained
with the method.

Preliminary computations of a round jet it: a low

Mach crossflow with ground effect have also been per-
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American Institute of Aeronautics and Astronautics



formed. Here, tile preconditioned duaI-_ime scheme

enables the use of much larger physical time step sizes,

which is important for eNciently resolving the low fre-

quency pulsations of the horshoe-shaped ground vor-

tex. More detailed computations are currently being

performed and will be compared with experimental

trends. The eventual goal is to apply the validated

code to the computation of Harrier flowfields.

The limitation of the present implementation is

that the same preconditioning is employed for both

the artificial dissipation fornmlation and for the time-

derivative. The disadvantage of this is that tile final

solution is dependent upon the choice of time-step

size. This difficulty may be effectively circumvented

through using separate preconditioners for the dissi-

pation and time-derivative terms. The former then

controls the accuracy of the discrete formulation, while

the latter controls convergence efiqciency of the sub-

iterations. Implementation of such a multi-level pre-

conditioning formulation will be the subject of future

work.
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APPENDIX

The Preconditioning Matrix

The preconditioning matrix Fp has the form defined

in [16].

Fp z

l p; o o o 1

up'p p 0 0 upr

vp' v 0 p 0 vpr

Wp; 0 0 p WpT

(php + hop'p -1) pu pu pu, phr + hoPT]

(17)

' - _ and a is the speed of sound. Here ep =where pp -- epa-

, ip However, in practice pp is never computed
l+("f-- 1) A/'_ "

directly. Instead, computing the eigenvalues of Sp-lAp

and
(Eqn. 22) involves the evaluation of the terms d'
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_a These terms are defined as follows.
d I •

phT phf

d' phTp_ + (1 -- phplpT

pep

p%(bp_ + (1 - b)pv) - -

Cpa 2

cp( ± + ,y - -rb) - _/_2
fp

Ct 2

b -yb+l
('p

M_C

- -i)

(18)

Defining fl' - M=
- b_MFb__)

Phi---2'= _'a 2 (19)
d'

Also,
d

_ d, _ 9' (20)
d'

d

_ L,_ha_ ,ui ofThe values o, M_; and b now controls the _ ......
the preconditioner. The parameter b switches the be-

havior of the preconditioner from unsteady to steady.

For steady flows, b = 1 and S = J[_.

For unsteady flows, 3I 2 is defined by Eqn. 14.

Definition of S_

Sp = _ vPv
I I!

II

where Pv = bP'v - (b - 1)p v. and

0 0 0 PT ]

p 0 0 W)T |

0 p 0 vpT ]
0 0 fl WIlT |

pu pv pw ph,T + hoPTJ
(21)

1 3_r

_=l+2A t

Eigenvalues of

A,,2,a = bU

b [ (1U d_ IU2(1 d)2+4__d7_.phr

(22)
Eigenvalues for $_1/)p and S_IC'v are similar.

Eigenvectors of Sp-lJp

For the repeated eigenvalues(A = 5U), many choices

of the eigenvectors are possible. The following choice

keeps the eigenvectors associated with the linear eigen-

values fl'om beconfing degenerate by assuring that the

eigenvectors are non-vanishing independent of the ge-

ometric orientation [17].

(23)

where {-_,v,-"--Iv_[
The eigenvectors corresponding to the eigenvalues

of A+ and A- are

_ A- --bU_,

A+ -A-

b_

p(x+-x-)

p(x+_-X )

0(x+-x-)

phT A+ --k-

A+ A-

bE_

p(x+-x-)

p(x+:x-)
b&

pox + ,X-)

phT X + --A-

(24)

For a perfect gas, the left and right eigenvector ma-
trices can be written as follows.

where

v/ dA+ - A- = b U2(1 - d" 2 + 4 V[[ 2

= b_/U_-(1 - 3,) _-+ 4a-_3'[V{[ 2

(26)

i I- 4 o -

where A_ = -p(A- - bU), A2 = -p(A + - bU), and

can be replaced with r/ or ( to obtain the eigen-

vector matrices for Sp1Bp, and S_o_C;.
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